
1.  Introduction
Soil erosion is an important land process that greatly shapes the topography, land cover, hydrology, and bio-
geochemistry of the Earth system (Berhe et al., 2018; Sobolev & Brown, 2019). Particularly, by transporting 
minerals, carbon, and nutrients from land to rivers (Galy et al., 2015; Tan et al., 2017), soil erosion alters the 
global carbon and nutrient cycles (Dialynas et al., 2016; Tan et al., 2020, 2021; Van Oost et al., 2007; Z. Wang 
et al., 2017), disturbs aquatic and coastal ecosystems (Blum & Roberts, 2009; Davies-Colley & Smith, 2001), 
and threatens agricultural sustainability (Lal, 2004; Montgomery, 2007). Historically, humans have increased 
soil erosion substantially through the expansion of agriculture (Jenny et al., 2019; Syvitski et al., 2005), while 
recent reforestation efforts, as well as conserved agriculture (CA), have helped to revert the increasing trend in 
many countries (Lal, 2004; Lanckriet et al., 2012; L. Li et al., 2020). Although soil erosion is ubiquitous and im-
portant, its interaction with climate change and the influence of soil erosion management actions on aquatic spe-
cies protection and wetland restoration have not been well understood (Adams et al., 2020; Borrelli et al., 2020; 
Davies-Colley & Smith, 2001; L. Li et al., 2020; Lugato et al., 2018; Powlson et al., 2014; Tan et al., 2021). 
This limited understanding is partly because soil erosion is seldom represented in Earth System Models (ESMs), 
which is the primary tool to study climate change. As a result, it was usually studied as a standalone process rather 
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than as a key element of the Earth system that interacts with the atmosphere, rivers, and oceans, and the two-way 
feedbacks between soil erosion and the global carbon cycle were ignored in the latest Intergovernmental Panel on 
Climate Change (IPCC) report (Denman et al., 2007).

The history of soil erosion and sediment flux (defined as the amount of detached sediment that reaches river net-
works) model development has been well documented in recent literature reviews (Batista et al., 2019; Borrelli 
et al., 2021; de Vente & Poesen, 2005; de Vente et al., 2013). Existing models differ significantly in structures 
(e.g., regression, factorial scoring, conceptual, and process-based), spatial scales (e.g., plot, hillslope, catch-
ment, watershed, and continental), represented processes (e.g., interrill erosion, rill erosion, tillage erosion, gully 
erosion, deposition, and landslides), and focused land covers (e.g., cropland, rangeland, and woodland). Since 
ESMs are usually run at coarse spatial resolutions globally including remote regions, process-based soil erosion 
models at the catchment scale representing sediment deposition in all major land covers, with low to medium 
requirements for input data, would be favored (Tan et al., 2018). For example, based on comparison of eight rep-
resentative soil erosion models over US catchments, we showed that the Morgan-Morgan-Finney model (Morgan 
& Duzant, 2008), although simple in formulations, is capable of representing soil erosion and sediment flux in 
diverse environments (Tan et al., 2018, 2020). We thus implemented it in the Energy Exascale Earth System 
Model (E3SM) land model (ELM), forming the ELM soil erosion model (ELM-Erosion).

As described in Tan et al. (2020), ELM-Erosion simplifies catchment-scale soil erosion and sediment flux pro-
cesses into rainfall-driven erosion, runoff-driven erosion, and sediment transport capacity. These three processes 
are driven by E3SM simulated hydrological (i.e., throughfall, leaf drips and surface runoff) and ecological condi-
tions (i.e., leaf area index, canopy height and land cover), both varying spatially and temporally, and geographic 
data (e.g., slope and soil texture) that only vary spatially. Despite its good performance in the US, our previous 
analysis also highlighted several aspects in ELM-Erosion that need to be improved to represent soil erosion and 
sediment flux realistically in the context of climate and land use change. These aspects include: (a) the effects 
of conserved tillage, plant residue management and irrigation on soil erosion, (b) full coupling of E3SM soil 
erosion, crop and dynamic land use models, and (c) a globally consistent parameter calibration scheme (Tan 
et al., 2018, 2020, 2021).

To achieve globally consistent modeling of soil erosion and sediment flux in ESMs, in this study, we will rep-
resent several important governing factors missing in the current ELM-Erosion and implement a global-scale 
regionalized parameter calibration method. Differences between ELM-Erosion simulation and benchmark data 
and model uncertainty will be analyzed to understand their environmental dependence. In addition, ELM-Erosion 
simulated soil erosion will be validated against independent datasets. Importantly, we will use ELM-Erosion to 
produce a global-scale 0.5-deg resolution map of sediment delivery ratio (SDR; the ratio of sediment flux to soil 
erosion), which could provide very useful information on the response of upland sediment, carbon, and nutrient 
fluxes to climate and land use change.

2.  Methods and Materials
2.1.  Model Description

Compared with Tan et al. (2018, 2020), the ELM-Erosion model is improved here to achieve consistent global 
modeling of upland soil erosion and sediment flux. In particular, we implement several changes to ELM-Erosion 
to better represent the impact of cropland management actions (i.e., irrigation, conserved tillage and managed 
plant residue), land use and land cover change (LULCC) and geology (i.e., glacier and lithology) on soil erosion 
and sediment flux. For cropland management actions, we enable the coupling of ELM-Erosion and the E3SM 
crop model and irrigation model (Leng et al., 2017; Zhou et al., 2020) and treat the irrigation water as an addi-
tional rainfall source for soil erosion. We also incorporate the CA factor for soil erosion into ELM-Erosion (Tan 
et al., 2017) and refine the plant residue effect on soil erosion using the scheme adopted by the Revised Universal 
Soil Loss Equation (RUSLE) model (Lippe et al., 2014; Renard et al., 1997). For LULCC, we enable the coupling 
of ELM-Erosion and the E3SM dynamic land use model which updates plant and soil water, carbon and nutri-
ent budgets at the start of each year (Drewniak et al., 2015). For geological effects, we incorporate the glacier 
and lithology factors introduced by the BQART model (Syvitski & Milliman, 2007). The updated equations of 
ELM-Erosion are given below.
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ELM-Erosion defines soil erosion as the sum of rainfall-driven erosion F and runoff-driven erosion H and up-
land sediment flux as the amount of detached sediment reaching the river network. As such, sediment flux is 
calculated as the lesser value of soil erosion and sediment transport capacity of overland flow Tc. Soil erosion by 
raindrops F is calculated as:

𝐹𝐹 = 𝑐𝑐1 ×𝐾𝐾 × 𝑃𝑃𝐶𝐶𝐶𝐶 × 𝐿𝐿 × 𝐺𝐺𝐺𝐺 × (𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 +𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿),� (1)

where K is the soil erodibility (kg J−1), PCA is the CA factor (PCA = 2.7 if no cropland in a land unit is under 
CA and PCA = 1 if 100% of cropland in a land unit is under CA), L is the lithology erodibility index that is the 
highest for unconsolidated sediments and the lowest for acid plutonic rocks (Moosdorf et al., 2018), GC is the 
ground cover factor that represents the reduction of erosion by plant residue and roots (Renard et al., 1997; Smets 
et al., 2008), and c1 is a free parameter for the adjustment of rainfall-driven erosion due to deviation from the 
standard condition of soil texture, vegetation and rain regimes. The total energy of the effective rainfall (J m−2) is 
the sum of the kinetic energy of the direct throughfall KEDT and the leaf drainage KELD from both natural rainfall 
and anthropogenic irrigation. KEDT is determined as a function of the rainfall intensity I (mm h−1) and the effec-
tive rainfall reaching the ground surface:

𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷 = 𝑅𝑅 × [(1 − 𝐶𝐶𝐶𝐶) + 𝐶𝐶𝐶𝐶 × (1 − 𝐴𝐴)] × (11.87 + 8.73 × log10(𝐼𝐼)),� (2)

where R is total rainfall (mm), A is the fraction of the rainfall intercepted by the vegetation or canopy cover, and 
CC is the canopy cover fraction. And KELD is estimated by:

𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿 = 𝑅𝑅 × 𝐶𝐶𝐶𝐶 × 𝐴𝐴 ×𝐷𝐷𝐷𝐷 × (15.8 × 𝑃𝑃𝑃𝑃0.5 − 5.87),� (3)

where PH is the height of the plant canopy (m) and DR is the fraction of leaf drainage.

Soil erosion by overland flow H (kg m−2) is calculated as a function of surface runoff Rs (mm):

𝐻𝐻 = 19.1 × 𝑐𝑐2 ×𝑍𝑍 × 𝑃𝑃𝐶𝐶𝐶𝐶 × 𝐿𝐿 × 𝐼𝐼𝑔𝑔 × 𝐺𝐺𝐺𝐺 ×𝑅𝑅1.5
𝑠𝑠 × sin𝜃𝜃𝜃� (4)

where Z is soil detachability by runoff (kg mm−1), Ig is the BQART glacier erosion factor (Ig = 1 + 0.09 × Ag, 
where Ag is the areal fraction (%) of glaciers in a grid cell), θ is slope angle, and c2 is a free parameter for the 
adjustment of runoff-driven erosion due to deviation from the standard condition of soil texture, vegetation and 
rain regimes. The above equation assumes that soil particle detachment by runoff only occurs where soil is not 
protected by ground cover. For loose, non-cohesive soils (e.g., sand), Z = 10−3. For cohesive soils, Z is calculated 
as Z = 1/0.5 × COH, where COH is the cohesion of the soil (Pa). The values of K and COH for different pfts and 
soil texture types are described in Tan et al. (2018).

The sediment transport capacity of overland flow Tc (kg m−2) is given by:

𝑇𝑇𝑐𝑐 = 0.0191 × 𝑐𝑐3 × 𝑆𝑆𝑆𝑆 × 𝑃𝑃𝐶𝐶𝐶𝐶 × 𝐿𝐿 × 𝐼𝐼𝑔𝑔 ×𝑅𝑅2
𝑠𝑠 × (sin 𝜃𝜃)1.25,� (5)

where SR is the surface roughness factor, and c3 is a free basin-specific parameter for the adjustment of transport 
capacity due to deviation from the standard condition of surface roughness, drainage density and rain regimes. 
The exponent of 1.25 for the slope factor is used following Pelletier (2012).

The ground cover factor GC in Equations 1 and 4 is defined as a function of ground cover and the root biomass 
density at the topsoil (the top inch of the soil column) (Renard et al., 1997; Smets et al., 2008):

𝐺𝐺𝐺𝐺 = 𝑒𝑒−𝑏𝑏𝐶𝐶×max(𝐶𝐶𝑟𝑟,𝐶𝐶LAI)−𝑏𝑏𝑅𝑅×𝐵𝐵𝑅𝑅 ,� (6)

where Cr is the surface cover fraction calculated from the plant residue, CLAI is the surface cover fraction cal-
culated from leaf area index (LAI) (Pelletier, 2012), BR is the root biomass density at the topsoil (kg m−3), and 
bC and bR are plant functional type (pft)-specific parameters for the effectiveness of surface cover and roots in 
reducing soil erosion, respectively. Noticeably, the values of bC and bR are different for rainfall- and runoff-driven 
erosion because roots are more effective in reducing runoff-driven erosion (Smets et al., 2008). Thus, we define 
bC1 and bC2 for the effectiveness of surface cover for rainfall-driven and runoff-driven erosion, respectively, and 
bR1 and bR2 for the effectiveness of roots for rainfall-driven and runoff-driven erosion, respectively. To convert 
plant residue biomass on the ground Br (kg m−2) to surface cover fraction Cr, we use the widely used exponential 
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relationship (Smets et al., 2008): 𝐴𝐴 𝐴𝐴𝑟𝑟 = 1 − 𝑒𝑒−𝑎𝑎×𝐵𝐵𝑟𝑟 , where a is a regression co-
efficient that we set as 6.680 for the residue of all pfts. The use of a uniform 
a value is due to two reasons. First, differences in the effect of vegetation 
residue on soil erosion between different pfts are still being debated (X. Li 
et al., 2014; Smets et al., 2008). Second, the use of a uniform value simplifies 
the calibration of the parameter bC which probably covaries with a. The sur-
face roughness factor SR in Equation 5 is defined as a function of Manning's 
coefficient n (Misra & Rose, 1996):

�� =
(0.03

�

)0.6
,� (7)

where n is calculated as n = 0.03 + 0.05 × max(Cr, CLAI) (Lippe et al., 2014). In ELM-Erosion, the surface rough-
ness factor SR varies both spatially and temporally.

2.2.  Model Data and Simulation

The model was configured globally at 0.5-deg resolution for transient simulations from 2000 to 2014 using the 
Global Soil Wetness Project (GSWP) reanalysis forcing (Dirmeyer et al., 2006). To simulate the effect of LULCC 
on soil erosion, we used the LULCC data from the Land Use Harmonized version 2 (LUH2) transient data set 
(Hurtt et al., 2011) which was converted to 24 ELM pfts including a bare ground pft, 14 natural vegetation pfts 
and 10 crop pfts. The 10 crop pfts include five rainfed crop pfts (e.g., corn, cereal, soybean and generic crop) and 
five irrigated crop pfts (e.g., corn, cereal, soybean and generic crop). For irrigated crop pfts, the irrigation timing 
and amount are simulated by the ELM irrigation model which was first introduced by Sacks et al. (2009) based 
on soil moisture deficit and later enhanced by Leng et al. (2017) and Zhou et al. (2020) considering groundwater 
pumping and the balance of irrigation water demand and supply. The biomass of plant residue and roots are up-
dated by ELM based on the dynamics of photosynthesis, respiration, phenology (planting, leaf emergence, grain 
fill and harvest) and carbon allocation (Drewniak et al., 2015; Oleson et al., 2013). To calculate the PCA factor, we 
used the global-scale CA map of Prestele et al. (2018) and the United States (US) county-level tillage data com-
piled by the Conservation Technology Information Center (CTIC, 2008), as shown in Figure S1 of Supporting 
Information S1. The data of Prestele et al. (2018) was used for all regions except the conterminous US for which 
the more accurate CTIC data was used. Following Moosdorf et al. (2018), the lithology erodibility index L was 
calculated based on a global 0.5-deg resolution lithology map (Hartmann & Moosdorf, 2012), as shown in Figure 
S2 of Supporting Information S1.

To differentiate the effects of CA, irrigation, LULCC and glaciers on soil erosion, we set up five numerical exper-
iments, as described in Table 1. Comparisons of the full versus no-CA experiments, the full versus no-irrigation 
experiments and the full versus no-glacier experiments are used to evaluate soil erosion changes caused by CA, 
irrigation, and glaciers, respectively. In addition, comparison of the full versus no-CA-LULCC experiments is 
used to evaluate the total impact of CA and LULCC on the Mississippi's upland sediment flux.

To analyze the effects of climate, vegetation, and topography on soil erosion, we used the following data: (a) 
mean annual temperature (MAT) and mean annual precipitation (MAP) from the WorldClim version 2.1 climate 
data (Fick & Hijmans, 2017), (b) gross primary production (GPP) from the data set of Jung et al. (2011), (c) 
cropland fraction from the LUH2 data set (Hurtt et al., 2011), and (d) elevation and slope from a 90 m resolution 
Digital Elevation Model (Lehner et al., 2008).

2.3.  Model Calibration and Validation

ELM-Erosion has seven free parameters for calibration: c1, c2, c3, bC1, bC2, bR1, and bR2. As described in Sec-
tion 2.1, the values of these parameters are spatially correlated and usually depend on soil texture, pft and climate. 
Thus, it is reasonable to use a global-scale regionalized parameter calibration method for model calibration (Beck 
et al., 2016). First, because the parameters bC1, bC2, bR1, and bR2 are pft-specific, they can be set to the same values 
for the same land cover. Second, for the parameters c1 and c2, because the uncertain factors K and Z are related to 
soil texture and land cover and the relationships of KEDT and H to rainfall and runoff probably depend on climate 
regimes (Morgan & Duzant, 2008), they should vary with pft, soil texture and climate. Thus, the values of the 

Numerical experiment CA LULCC Irrigation Glacier

Full experiment Yes Yes Yes Yes

No-CA experiment No Yes Yes Yes

No-irrigation experiment Yes Yes No Yes

No-glacier experiment Yes Yes Yes No

No-CA-LULCC experiment No No Yes Yes

Table 1 
Summary of Numerical Experiment Settings
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parameters c1 and c2 can be set to the same values for the same combination 
of pft, soil texture and the Köppen-Geiger climate classification. Third, the 
parameter c3 can be calibrated for each river basin where pre-dam sediment 
flux data are available.

In theory, the parameters c1 and c2 should span over 25 pfts (Table S1 in 
Supporting Information S1), 12 soil texture types (Table S1 in Supporting 
Information  S1), and 30  Köppen-Geiger types (Beck et  al.,  2018), which 
would correspond to 9,000 combinations in total. But after regionalization, 
only 679 combinations (or 7.5% of the total combinations) that have at least 
five corresponding grid cells (Figure 1) are needed to cover the grid cells 
globally. Thus, our global-scale regionalized calibration follows three steps: 
(a) running an ensemble of 4800 ELM-Erosion simulations with each sim-
ulation using different parameter values that are randomly sampled within 
the parameter space, (b) calculating the model bias of each model simula-
tion for 679 combinations against the soil erosion benchmark data, and (c) 
applying a Monte-Carlo-based Bayesian recursive parameter optimization 
scheme (Tang & Zhuang, 2009) to select optimal values of c1 and c2 for each 
combination. To construct the probability density function of the parameters, 
we use an ensemble size of 4,800, which is a factor of 10 larger than the en-
semble size needed for screen sensitivity analysis (Campolongo et al., 2007) 
calculated as 160 × (Nparam + 1) with the parameter number Nparam equals to 2.

After calibrating bC1, bC2, bR1, bR2, c1, and c2, we ran another ensemble of 
4800 ELM-Erosion simulations by varying c3 values, calculated the model 
bias of each model simulation against the sediment flux benchmark data, 
and applied the Bayesian optimization scheme to select optimal c3 values for 
each river basin.

The soil erosion benchmark data is derived from the RUSLE estimate of Borrelli et al. (2017), with soil erosion in 
China refined by the data set of Yue et al. (2016). The sediment flux benchmark data is derived from the WBM-
sed pre-dam (its “Pristine” mode) estimate (Cohen et al., 2014), with many refinements based on the published 
data of Milliman & Farnsworth (2011) and H. Wang et al. (2007). WBMsed is used to simulate global water dis-
charge and suspended sediment flux over the same 0.5-deg resolution river network (WBMsed native simulation 
is 6 arc-minute) as ELM-Erosion but with different input data. Both the RUSLE and WBMsed models have been 
widely used and validated for long-term soil erosion and sediment discharge calculations, respectively (Cohen 
et al., 2013, 2014; Renard et al., 1997). Because WBMsed is developed to simulate sediment discharge in large 
rivers, we set the parameter c3 to unity for rivers that only occupy a single grid cell. To validate the simulated soil 
erosion, we used the catchment-scale soil erosion data from Mishra et al. (2019) and the Global Applications of 
Soil Erosion Modeling Tracker (GASEMT) database (Borrelli et al., 2021). The data of Mishra et al. (2019) have 
been converted to t km−2 yr−1 by multiplying them by the soil bulk density that is calculated in ELM based on soil 
porosity (Oleson et al., 2013). For the validation data, we mapped each record to the ELM 0.5-deg resolution grid 
and averaged the values by site areas if multiple records were mapped into the same grid cell.

3.  Results
3.1.  Global Soil Erosion Modeling

As expected, the calibrated model parameters show substantial spatial variabilities that are closely correlated 
with the variability of vegetation and climate (Figure 2). Because soil erosion is usually insensitive to the surface 
cover and root factors of rainfall-driven erosion bC1 and bR1 (Table S2 in Supporting Information S1), we mostly 
set their values for pfts by default. The values of the surface cover and root factors of runoff-driven erosion bC2 
and bR2 are higher in areas with more vegetation biomass, such as tropical rainforest (Figure 2), which can be 
attributed to the better protection of surface cover and roots on soils in areas of dense vegetation. Except for de-
serts where water-driven soil erosion is negligible, the scaling factors of rainfall-driven and runoff-driven erosion 
c1 and c2 are lower in well-vegetated areas under various climates, such as tropical rainforest and boreal forest, 

Figure 1.  Distribution of the 0.5-deg resolution E3SM grid cells by pft, soil 
texture, and climate classification.
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and higher in poorly vegetated areas with high precipitation, such as tropical and subtropical cropland (Figure 2), 
which is consistent with the spatial variability of the soil erosion benchmark (Borrelli et al., 2017). The spatial 
variability of the scaling factor of sediment transport capacity c3 is less evident, because the calibration of c3 is 
river basin based, and large river basins usually span several ecoclimate zones.

Through regionalized calibration, ELM-Erosion successfully reproduces the spatial variability of the soil erosion 
benchmark (Figure 3): the log-log linear regression between our simulation and the benchmark is y = 1.13 x0.95 
with R2 = 0.825 and p < 0.0001. Both ELM-Erosion and the benchmark data predict high soil erosion in areas of 
vast cropland, including the plains in China, India, US, and South America, or steep topography, including the 
Himalayas and Andes, and low soil erosion in areas of dense vegetation, including the tropical and boreal forest. 
Because of extremely low precipitation, soil erosion in desert areas, including the Sahara, Gobi, and Atacama 
Desert, is negligible. For US, Europe, India and South Africa, our simulated mean soil erosion rates in cropland 
are 597, 272, 726, and 517 t km−2 yr−1, respectively, which are close to previous independent estimates, such as 
the estimate of 668 t km−2 yr−1 for US cropland by USDA (2018), the estimate of 246 t km−2 yr−1 for European 

Figure 2.  Global distribution of the calibrated ELM-Erosion parameters.
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cropland by Panagos et al. (2015), the estimate of 864 t km−2 yr−1 for Indian cropland by Doetterl et al. (2012), 
and the estimate of 690 t km−2 yr−1 for cropland in South Africa by Compton et al. (2010). Our simulated global 
soil erosion in cropland is 7.13 × 109 t yr−1, which is within the range of the estimate (13.1 ± 6.6 × 109 t yr−1) by 
Doetterl et al. (2012). Noticeably, ELM-Erosion achieves all these consistent estimates by using input data that 
are at much coarser resolutions and probably also have lower quality than those used in independent studies. For 
Australia, our simulated mean soil erosion rate in cropland is 168 t km−2 yr−1, which is only half of the estimate 
(340 t km−2 yr−1) by Lu et al. (2003). But Lu et al. (2003) also pointed out that for improved legumes and cereals, 
the major crops in Australia, the mean soil erosion rate is 190 t km−2 yr−1. Thus, the large discrepancy between 
our estimate and Lu et al. (2003) is likely caused by the difference in land use data. For instance, the LUH2 data 
set used by ELM-Erosion does not differentiate some erosion-prone crops in Australia, such as sugarcanes (Lu 
et al., 2003).

As shown in Figure 4, the simulated and benchmark soil erosion rates are also comparable at the levels of pft, soil 
texture and climate classification. Consistent with observations (Lanckriet et al., 2012; Poesen & Savat, 1981; 
Poesen et al., 2003), soil erosion is greatly elevated in grid cells dominated by crop pfts, particularly under warm 
climate, which is mainly caused by weakened soil cohesion (e.g., high rain erodibility K and soil detachability Z) 
and vegetation protection by agricultural activities (e.g., low LAI). Soil erosion is also large in grid cells dominat-
ed by broadleaf evergreen shrub, which is usually located in hilly areas of the Mediterranean climate with strong 
seasonality (Vanmaercke et al., 2011). Comparison of soil erosion under different climates (Figure 4c) demon-
strates the non-monotonic dependence of soil erosion on temperature and precipitation (García-Ruiz et al., 2015).

Because ELM-Erosion and RUSLE differ in the model parameterization, there still exist large differences be-
tween the two estimates in some regions, such as the Andes, the Brazilian Plateau, and the Yungui Plateau of 
China (Figure 3c), and for some pfts, such as tropical broadleaf evergreen tree (Figure 4a). Comparison of the 
ELM-Erosion and RUSLE-based soil erosion along gradients of climate, topography and vegetation reveals that 

Figure 3.  Global maps of the (a) simulated soil erosion, (b) the benchmark soil erosion, (c) the simulation-benchmark 
difference, and (d) scatterplot of the simulated versus benchmark soil erosion. In panel (d), the black dashed line is the 1:1 
reference and the green line is the linear regression between simulation and benchmark (y = 1.13 x0.95 with R2 = 0.825 and 
p < 0.0001).
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the difference between the two models could be mainly caused by their distinct parameterizations of soil ero-
sion versus slope relationship (Figure 5): high Kling-Gupta efficiency (KGE) scores for consistent response of 
soil erosion to climate and vegetation variations and low KGE scores for divergent response of soil erosion to 
topography variations between the two models. ELM-Erosion predicts much weaker response of soil erosion to 
the increase of elevation and slope than that in RUSLE (Figures 5c–5d). For high-elevation (elevation >1,000 m) 
and high-slope (slope >3°) regions, the RUSLE-based estimate is much larger. This discrepancy could have two 
causes. First, because the RUSLE-based estimate is based on high-resolution slope data (Borrelli et al., 2017), 
it can represent more steep slopes in mountainous regions where intense soil erosion is produced during rain 
events. Second, RUSLE accounts for slope length in its slope factor that is difficult to calculate and has variable 
relationships with dominant erosion processes in regions of rough topography (Wu et al., 2021). Comparison of 
the ELM-Erosion and RUSLE-based estimates to observations indicates that the soil erosion versus topography 
relationship in ELM-Erosion could be more realistic (Figure 6). Compared to RUSLE, ELM-Erosion reduces soil 
erosion model bias at 59% of the observations (the total number of observations is 608), with 53% of the bias 
reduction exceeding 50%, and only increases model bias by over half at 17% of the observations. The relative 
bias of the ELM-Erosion simulated soil erosion is less than one in more than 70% of the observation sites, which 
is also better than RUSLE (Figure 6e). In particular, ELM-Erosion reduces soil erosion model bias substantially 
in the Andes, the Alps and the Yungui Plateau of China (Figure 6c). Comparison of the ELM-Erosion and RU-
SLE-based soil erosion bias along gradients of elevation and slope confirms that ELM-Erosion performs better 
in simulating soil erosion for mountainous regions with elevation larger than 1,000 m or slope larger than 3° 
(Figure 7).

ELM-Erosion also predicts lower soil erosion in areas of high cropland coverage than RUSLE (Figure 5f). Con-
sidering the robustness of RUSLE in modeling soil erosion in cropland, soil erosion is likely moderately under-
estimated by ELM-Erosion in cropland-dominated areas, as indicated in Figure 7f.

Figure 4.  Comparison of the simulated soil erosion (orange) and the benchmark soil erosion (blue) over (a) Köppen climate 
classification, (b) pft, and (c) soil texture. Bar plots represent the mean and standard deviation values.
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In contrast, the dependence of ELM-Erosion modeled soil erosion on mean annual temperature (MAT) and 
precipitation (MAP) is very consistent with that in RUSLE, even though RUSLE skews toward higher values for 
some MAT and MAP regimes (Figures 5a–5b). This consistency possibly implies that both the rainfall erosivity 
factor of RUSLE and the rainfall and runoff factors of ELM-Erosion are robust in predicting the response of long-
term soil erosion rates to climate variations. Comparison of the ELM-Erosion and RUSLE estimate biases along 
gradients of MAT and MAP also shows that there are no substantial differences in skills between the two models 
for different MAT and MAP regimes (Figures 7a–7b). Similarly, the dependence of soil erosion on gross primary 
production (GPP) is also consistent between ELM-Erosion and RUSLE (Figure 5e). Thus, the vegetation cover 
factors of both RUSLE and ELM-Erosion are robust in modeling the response of long-term soil erosion rate to 
vegetation variations (Figure 7e).

As shown in Figure 6, ELM-Erosion underestimates soil erosion in many tropical islands of intense seismic 
activities, such as those in Indonesia, Papua New Guinea, Philippines, and Taiwan. Further analysis using the 
data of seismic activities (Giardini et al., 1999) shows that the underestimation mainly occurs within the peak 

Figure 5.  Comparison of the simulated (blue) and the benchmark (black) soil erosion over gradients of (a) MAT, (b) MAP, (c) elevation, (d) slope, (e) GPP, and (f) 
cropland fraction. Solid lines and shaded areas represent the median and the 25th and 75th percentiles of the simulated and benchmark soil erosion. The KGE scores are 
calculated based on the median values of the simulated and benchmark soil erosion.
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ground acceleration (PGA) zone between 2 and 4 m s−1 (Figure S3 in Supporting Information S1). Because strong 
earthquakes usually trigger extensive landslides (Dadson et al., 2003), this model bias is likely caused by ignoring 
landslide-induced soil erosion in ELM-Erosion.

3.2.  Impacts of CA, Irrigation, and Glaciers

Compared to the no-CA experiment, the full experiment that accounts for the effect of CA predicts much lower 
soil erosion in countries where CA practices are widely adopted (Figure 8). The effect of CA on soil erosion is 
particularly profound in the US Midwest and Argentina. Globally, US, Argentina and China rank top in using 
CA to reduce soil erosion. Our simulation results (Figure 8c) show that the adoption of various CA practices 
may have reduced the total soil erosion in US cropland from 1.28 × 109 t yr−1 to 0.93 × 109 t yr−1 and relatively 

Figure 6.  (a) Bias of the simulated soil erosion, (b) the RUSLE-estimated soil erosion, (c) comparison of the simulated 
and the RUSLE-estimated soil erosion bias, (d)the observed soil erosion, and (e) comparison of the cumulative distribution 
function (CDF) of the simulated and the RUSLE-estimated soil erosion relative bias. Dark gray in panels (a–d) represents 
high elevation.
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by 27%. Similarly, the adoption of CA practices may have reduced the total soil erosion in Argentinian cropland 
from 0.27 × 109 t yr−1 to 0.20 × 109 t yr−1 and relatively by 28%. Because of uncertainty in the CA data (Table 
S3 in Supporting Information S1), our estimate may have large uncertainties for some countries such as Brazil.

The effect of irrigation on soil erosion is the most pronounced in East and South Asia, especially China and 
India (Figure 9). By comparing the simulated soil erosion between the full experiment and the no-irrigation ex-
periment, we find that irrigation may have increased the total soil erosion in cropland in China from 1.42 × 109 t 
yr−1 to 1.56 × 109 t yr−1 and relatively by 10%, with the largest increase in North China (Figure 9c). The effect 
of irrigation on soil erosion is even larger in India, with the increase of the total soil erosion in cropland from 
1.06 × 109 t yr−1 to 1.18 × 109 t yr−1 and relatively by 12%. Globally, China, India, and US rank top for the amount 
of irrigation-induced soil erosion because they have the largest irrigation area and water usage in the world 
(Figure 9b). If measured by the soil erosion increase ratio, the effect of irrigation is even much larger in Egypt 
(Figure 9c) where the agricultural water demand is almost solely met by irrigation. The accuracy of our estimates 
could be limited because of uncertainties in the ELM irrigation model in estimating irrigation efficiency and 
water demand (Leng et al., 2017; Zhou et al., 2020).

Figure 7.  Comparison of the simulated (blue) and the RUSLE-estimated (black) soil erosion bias over gradients of (a) MAT, (b) MAP, (c) elevation, (d) slope, (e) GPP, 
and (f) cropland fraction. Solid lines and shaded areas represent the median and the 25th and 75th percentiles of the simulated and RUSEL-estimated soil erosion bias.
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The effect of glaciers on soil erosion is minor at the global scale (Figure S4 in Supporting Information S1). But 
for some regions, such as the Himalayas, the Alps, and the Pacific Coast Ranges in Alaska and British Columbia, 
the increase of soil erosion induced by glacial movement is profound. Noticeably, our model likely underesti-
mates glacier-induced soil erosion in Greenland and the Antarctic (Overeem et al., 2017) because ELM does not 
assign soil columns to many of the land grid cells in these permanently ice-covered regions.

3.3.  Global Sediment Flux Modeling

ELM-Erosion and WBMsed are consistent in modeling inter-basin variability of sediment flux (Figure 10). Be-
cause ELM-Erosion couples soil erosion and sediment flux in upland explicitly, the spatial variability of soil 
erosion and sediment flux simulated by the model are highly correlated (Figures 3a and 10c). As shown in Fig-
ure 10d, the two models have a higher agreement at large river basins, possibly because WBMsed was developed 

Figure 8.  (a) Maps of CA-induced soil erosion reduction, (b) ranking of the total amount of CA-induced soil erosion 
reduction by country, and (c) the reduction ratio of soil erosion in cropland for the top ranked countries.
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to predict sediment discharge of large rivers and its uncertainty for small rivers could be substantial (Cohen 
et  al., 2014). It should be noted that for some large rivers, such as the Yellow River, the difference between 
ELM-Erosion and WBMsed is caused by the refinement of pre-dam sediment discharge for calibration using 
the published data. Consistent with observations (Milliman & Farnsworth, 2011), the simulated global sediment 
flux is mainly contributed by large rivers in the tropics and subtropics, such as Amazon, Ganges, Paraná, Nile, 
Yangtze, Yellow, Mississippi, Indus, Mekong, Irrawaddy, and Congo. For many of these rivers, sediment flux 
from upland is crucial for sustaining the river deltas as important biodiversity hotspots, such as the Ganges delta, 
the Mississippi delta and the Mekong delta (Blum & Roberts, 2009; Lovelock et al., 2015).

Compared to WBMsed, ELM-Erosion may have improved the modeling of global sediment flux in several as-
pects (Figure 10). First, it eliminates unrealistic sediment flux hotspots at many exorheic or small river basins 
predicted by WBMsed, such as those in Figure S5b of Supporting Information S1. These unrealistic hotspots 
could be produced for two reasons: (a) the WBMsed hydrology module has large uncertainties in simulating 

Figure 9.  (a) Maps of irrigation-induced soil erosion increase, (b) ranking of the total amount of irrigation-induced soil 
erosion increase by country, and (c) the increase ratio of soil erosion in cropland for the top ranked countries.
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river discharge in exorheic river basins or headwater catchments and (b) the relationship between sediment flux 
and basin area used by WBMsed is inappropriate for small basins. Second, it better represents the intra-basin 
variability of sediment flux by coupling sediment flux and soil erosion explicitly. For example, in the Nile Riv-
er, ELM-Erosion predicts a much larger sediment supply from its Blue Nile tributary (Figure S5 in Supporting 
Information S1). Given that Blue Nile flows through the erosion-prone Ethiopian Plateau and supplies over 80% 
of the water in the Nile during the rainy season (Awulachew et al., 2009), the ELM-Erosion prediction should be 
more plausible. Similarly, previous studies showed that the Ohio River supplies a large fraction of sediment in 
the Mississippi (Lee & Reutter, 2019), as predicted by ELM-Erosion (Figure S5 in Supporting Information S1).

Our calculation shows that sediment delivery ratio (SDR) has substantial inter- and intra-basin variabilities (Fig-
ure 11). For example, the estimated SDR of grid cells varies from over 0.8 in the Appalachians to below 0.2 in 

Figure 10.  (a) Maps of the ELM-Erosion simulated basin-scale sediment flux, (b) the WBMsed simulated basin-scale 
sediment flux, (c) the ELM-Erosion simulated area-specific sediment flux from upland, and (d) comparison of the ELM-
Erosion and the WBMsed simulated basin-scale sediment flux over gradient of river basin area. For each grid cell, basin-scale 
sediment flux is the accumulated sediment flux from its upstream catchment.
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the Midwest plains within the Mississippi. Our SDR estimates for the Mississippi's subbasins that are calculated 
based on the basin-scale soil erosion and sediment flux are consistent with those used by the USDA's Conser-
vation Effects Assessment Project (Arnold et al., 2014), with higher values in the Ohio-Tennessee (0.39), Lower 
Mississippi (0.45) and Arkansas-White-Red (0.40) river basins and lower values in the Upper Mississippi river 
basin (0.17). The sediment routed down the hillslopes to the riverine system accounts for 15.3% of the total eroded 
soil in Europe (Borrelli et al., 2018). The estimated mean SDR of the Mississippi and Amazon are 0.31 and 0.41, 
respectively. This difference is expected because compared with the Mississippi, the Amazon has a much larger 
fraction of forest coverage that limits soil erosion. Similar to the Amazon, other tropical rivers with high forest 
coverage also have larger SDR values, such as the Congo and many rivers in Southeast Asia (Figure 11). For 
these rivers, the high SDR values could imply that their sediment flux is erosion limited and thus more sensitive 
to LULCC, such as the expansion of economic crops, including soybeans and oil palms (Diodato et al., 2020).

Figure 11.  (a) Map of the simulated sediment delivery ratio, (b) relationships between sediment delivery ratio (SDR) and 
MAT, (c) MAP, (d) elevation, (e) slope, (f) GPP, and (g) cropland fraction. Solid lines and shaded areas in panels (b–g) 
represent the median and the 25th and 75th percentiles of the simulated SDR.
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The estimated SDR of grid cells exhibits diverse relationships with climate, 
topography, and vegetation (Figures 11b–11g). Generally, SDR has monoton-
ically positive correlations with MAP and GPP, which could be explained by 
the limitation of soil erosion by dense natural vegetations. In contrast, SDR 
has a slightly negative correlation with cropland fraction, possibly because 
crop cultivation increases soil erosion substantially and transforms sediment 
flux over related river basins to transport limited. The positive relationship 
between SDR and slope indicates that with increasing land slope, sediment 
transport capacity increases faster than soil erosion.

Evaluating the impact of individual drivers, such as upland sediment flux, 
channel erosion/deposition and water management, on the change of river 
sediment flow (Cohen et al., 2014; L. Li et al., 2020) is not trivial. For ex-
ample, the contributions of different drivers to the sediment reduction in the 
Mississippi river since 1950s are still uncertain (Meade & Moody,  2010; 
Mize et al., 2018; Murphy, 2020), even if river sediment has been routinely 
measured at the outlets of the river and its large subbasins. For the Mis-
sissippi, ELM-Erosion estimates that the sediment discharge under the pre-
dam pre-conservation and post-conservation conditions are 392  Mt yr−1 
(Mt = 106 t) and 258 Mt yr−1, respectively (Table 2), which are very close to 

the previous estimates (400 and 253 Mt yr−1, respectively) (Cohen et al., 2014; Milliman & Syvitski, 1992). As 
such, our model could be useful to constrain the partition of the Mississippi's sediment flow change. Comparing 
the full and no-CA-LULCC experiment, we estimate that the reduction of upland sediment flux caused by CA 
and LULCC might contribute to a third of the observed sediment flow reduction in the Mississippi, and within 
the Mississippi the sediment flux reduction in the Missouri is the most pronounced (Table 2). It implies that some 
channel sediment process, such as reservoir trapping, dominates the sediment flow reduction in the Mississippi, 
as claimed by Meade & Moody (2010).

4.  Discussion
4.1.  Global Soil Erosion and Sediment Flux Modeling

Our numerical experiments indicate that the regionalized parameter calibration scheme is effective in constrain-
ing the global soil erosion and sediment flux modeling and the calibrated ELM-Erosion has good skills in predict-
ing the spatial variability of soil erosion and sediment flux at the global scale. For soil erosion, ELM-Erosion is 
consistent with the RUSLE-based benchmark data at the levels of pft, soil texture and climate classification, even 
though it uses input data at much coarser resolutions that are probably also at a lower quality. Comparison of the 
ELM-Erosion and RUSLE-based soil erosion to independent data shows that our model predicts more accurate 
relationships between soil erosion and topography in mountainous areas (elevation >1,000 m or slope >3°). This 
is possibly due to the large uncertainty in the slope length calculation in RUSLE and also uncertain dependence 
of soil erosion on slope length for regions of rough topography. Our analysis also shows that the land cover and 
hydrologic factors of ELM-Erosion have similar robustness to the land cover and rainfall erosivity factors of 
RUSLE in predicting the response of long-term soil erosion rates to vegetation and climate variations. Compared 
with WBMsed, ELM-Erosion may have improved the modeling of sediment flux in several aspects, including 
the elimination of unrealistic inland sediment flux hotspots, better representation of intra-basin sediment flux 
variations, and better representation of sediment flux in small river basins.

The improved ELM-Erosion provides several useful modeling capabilities that are rarely available in global soil 
erosion and sediment flux modeling but are important for understanding the soil erosion-climate feedbacks and 
the effects of soil erosion on aquatic and coastal ecosystems. For example, because ELM-Erosion couples soil 
erosion with the cycles of soil carbon and nutrients (Tan et al., 2020, 2021) and explicitly represents the factors 
of CA and LULCC, it can be used to better understand the constraint of soil erosion on the growth of food sup-
plies and water quality in the developing countries under the changes of climate and land use. Also, because soil 
erosion and sediment flux are modeled simultaneously in ELM-Erosion, SDR can be easily estimated from the 
model simulations, which as demonstrated can be used to infer the potential sensitivity of river basins to environ-
mental changes, such as climate change and LULCC. Further, by coupling it with the E3SM river sediment model 

River basin

Sediment 
flux without 

CA and 
LULCC (Mt 

yr−1)

Sediment 
flux with 
CA and 
LULCC 
(Mt yr−1)

Simulated 
sediment 

flux 
change (Mt 

yr−1)

Observed 
sediment 
discharge 
change 

(Mt yr−1)

Mississippi 392 258 −134 −409

Missouri 98 55 −43 −236

Ohio 82 57 −25

Upper Mississippi 56 34 −22

Lower Mississippi 78 55 −23

Tennessee 24 17 −7

Arkansas-White-Red 53 39 −14

Table 2 
Comparison of the Simulated Change of Long-Term Sediment Flux Due 
to CA and LULCC and the Observed River Sediment Discharge Change 
(Meade & Moody, 2010) Since 1950s in the Mississippi and Its Major 
Subbasins
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that is now under development, ELM-Erosion will help to disentangle the mechanisms underlying the diverging 
trends of river water and sediment flows in many regions of the world (L. Li et al., 2020). Previous studies have 
shown that coastal wetland that receives insufficient sediment from inundation will be difficult to survive under 
accelerated sea-level rise (Kirwan et al., 2010) and the sediment supply of coastal wetland is profoundly impacted 
by river sediment dynamics (Blum & Roberts, 2009). As such, our synergistic effort to represent river sediment 
dynamics in conjunction with coupling of river and coastal sediment dynamics in E3SM will also advance under-
standing of coastal wetland evolution under global sea-level rise.

Our results show the importance to extending the practices of CA and managing irrigation to limit soil erosion. 
For countries that widely adopted the CA practices, such as US and Argentina, soil erosion in cropland has been 
reduced by over one-fourth. If the same techniques are applied to countries with rapid growth of population, 
such as countries in the Sub-Saharan Africa and South Asia, it would be possible to achieve the same amount of 
crop production despite the much lower soil loss and fertilizer applications, which would also benefit soil carbon 
sequestration (Lal, 2004). For irrigation, our study shows that it increases soil erosion in China and India by over 
10%. As irrigation-induced soil erosion is positively correlated with irrigation supply, advanced irrigation tech-
niques, such as drip irrigation, may also help reduce soil erosion.

4.2.  Limitations and Future Work

Noticeably, the ELM-Erosion model still has several limitations that may contribute to errors of soil erosion and 
sediment flux simulations at the global scale. First, as the current ELM crop model only represents 10 crop pfts, 
soil erosion in cropland that cultivates erosion-prone crops may be underestimated. For example, our analysis 
shows that the underestimation of soil erosion over Australian cropland could be caused by the misrepresentation 
of several economic crops, such as sugarcanes, in ELM. Thus, future development may include the addition of 
more crop pfts such as those represented in the Community Land Model version 5.0 (Cheng et al., 2020). Second, 
our analysis indicates that soil erosion in regions of intense seismic activities is underestimated by ELM-Erosion. 
It is probably because the model does not represent landslide-induced soil erosion. Since landslides are a complex 
process related to soil micropore dynamics (Fan et al., 2017), it will be difficult to directly represent landslides in 
ESMs using process-based methods (Tan et al., 2018). Instead, it may be feasible to model landslide-induced soil 
erosion using physics-informed machine learning methods. Third, currently we apply a single CA factor to the 
equations of both rainfall-driven and runoff-driven soil erosion. But observations show that the CA practices may 
cause a lower ratio of rill to interrill erosion in cropland (Renard et al., 1997). Thus, it may be reasonable to apply 
different CA factors to the two erosion types. Fourth, because the current ELM does not assign soil columns to 
many of the land grid cells in Greenland and Antarctic, ELM-Erosion probably substantially underestimates sed-
iment flux from glacial erosion (Overeem et al., 2017). Fifth, we used the pre-dam sediment yield from WBMsed 
to calibrate the sediment transport parameter c3, assuming that upland sediment flux is equal to pre-dam sediment 
yield. But for some rivers, such as the Yellow River, upland sediment flux may not be balanced by river sediment 
discharge under the pre-dam condition, causing the accumulation or depletion of river channel sediment. In such 
cases, the simulated sediment flux could be biased. However, the WBMsed pre-dam data is almost the only data 
currently available for upland sediment flux benchmark at the global scale.

5.  Conclusion
In this study, we explicitly represent the effects of cropland management actions (i.e., irrigation, conserved ag-
riculture, and crop residue management) and geological factors (i.e., lithology and glacier) on soil erosion in 
ELM-Erosion to better predict the evolution of global soil erosion and sediment flux in the context of climate 
change and LULCC. To achieve a globally consistent model calibration, we apply a regionalized parameter 
calibration method. Compared with the RUSLE-based benchmark data, the new ELM-Erosion model shows 
consistent spatial variabilities at the levels of pft, soil texture and climate classification and performs better in 
predicting soil erosion in mountainous areas. Our experiments show that tillage and irrigation have profound im-
pacts on soil erosion in cropland. For sediment flux, the ELM-Erosion and WBMsed simulations are consistent 
in inter-basin variability but have large differences in intra-basin variability for many rivers. The estimated SDR 
implies that areas with low sediment flux due to dense vegetation coverage may be sensitive to future changes in 
climate and land use. Our case study of the Mississippi river basin indicates that the change of upland sediment 
flux by CA and LULCC is not the dominant driver for the observed sediment flow reduction since 1950s in the 
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basin. Overall, this study demonstrates that the developed model provides several useful capabilities that are im-
portant for understanding the soil erosion-climate feedbacks and the effects of soil erosion on aquatic and coastal 
ecosystems.

Data Availability Statement
The source code of ELM-Erosion, the model simulations and benchmark data are publicly available at https://doi.
org/10.5281/zenodo.5762549.
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